Connect with us

Hirdetés

technokrata

Kavitációs víztisztító berendezés fejlesztése

kavitációs víztisztító

Ipar

Kavitációs víztisztító berendezés fejlesztése

Kavitációs víztisztító berendezés fejlesztése

A Gamma Analcont Kft. az NKFI-16 program keretében Kavitációs víztisztító berendezést fejlesztett, melyet kombinált biocidos technológiával a degradáció javítására és a fertőtlenítő hatás fokozására.

A bemutatott anyag:

  • A kavitáció elméletét ismerteti röviden
  • Egy Venturi kavitációs csatorna matematikai modelljét tárgyalja
  • A biocidos kezelés eredményeit ismerteti
  • Bemutatja a megvalósított kombinált víztisztító berendezést.

A kavitációs jelenség:

Az ivó-, és élővizek szennyeződése korunk fő problémája. A kavitáció, mely folyadékok áramlásakor lép fel, egyrészt roncsoló hatást okoz, elsősorban turbinák és hajólapátok esetében, ugyanakkor a jelenség – a nagy energiasűrűség következtében – alkalmassá tehető víztisztítási technológia hasznosítására.

A kavitáció folyadék áramlás során buborékképződéssel, vagy üregformálódással jár akkor, amikor a nyomás lecsökkenésével együtt a folyadék hőmérsékletéhez tartozó telített vízgőz nyomás azonossá válik. A folyadék ekkor forrni kezd, buborékképződés mellett gőz-folyadék fázis keverék alakul ki. A buborékban uralkodó nyomást a buborék mérete és a folyadék- gőz felületén létrejövő feszültség határozza meg.

Ha a buborék összeomlása elmarad, akkor pezsgés és forrás áll elő, ezt gázos illetve gőzös kavitációnak nevezzük, és amíg a gázos kavitációnak nincs, addig a gőzös kavitációnak jelentős roncsoló hatása van.

Ezek közül is jnagy jelentőségű a szuper kavitáció, mely kis kavitációs szám mellett alakul ki a kavitációs csatornában, egy állandó kavitációs üreget képezve.

A kavitációt a dimenzió nélküli kavitációs számmal jellemezzük (Thoma szám), mely a folyadék áramlási sebességétől, a folyadék sűrűségétől és a telítési gőznyomástól függ. A folyadék sebességet a kialakított szűk kavitációs keresztmetszettel vesszük figyelembe.

A kavitáció során képződött gőzbuborék a folyadékban összeomlik, nagyon rövid 10-8 illetve 10-6 sec alatt nagy nyomás és hőmérséklet emelkedés létrehozásával (1000 bar nyomás és 5000 °C hőmérsékletet is elérhetnek ezek az értékek).

Venturi elven működő kavitációs csatorna matematikai modellezése:

A kavitáció jelenségének matematikai módszerekkel történő modellezése egy szabad és nyílt forráskódú szoftverrel (Open Source Field Operation and Manipulation) végeztük. A szimuláció és a modell célja a tervezett geometrián modellezni a gázbuborékok keletkezését.

A modellezést kétdimenziós geometrián mutatjuk be: (A modellezést és a fényképes dokumentációt a KvakLab Kft. készítette).

venturi geometria

Venturi geometria

X irányban 500 egyenlő részre, Y irányban 100 egyenlő részre, Z irányban 1 egységnyi vastagságban (2D) bontottuk a rendszert. A cellák száma így 69 425, a pontok száma pedig 109 841.

Az eredményeket az alábbi fénykép dokumentációban illusztráljuk (különböző kavitációs időpontokban a folyadék-gőz arány, a nyomás érték, a sebesség érték és az áramlási kép került bemutatásra).

kavitációs víztisztító

Kavitációs berendezés tervezése és megvalósítása:

A Gamma Analcont Kft. által megépített víztisztító berendezés két jelenség kombinációjával készült. Egyrészt a kavitációs jelenség roncsoló hatását, másrészt a biocidos kezelés fertőtlenítő hatását alkalmaztuk.

A Venturi méretezése a „Clausius-Clapeyron” képlet felhasználásával történt, átlag szobahőmérséklethez tartozó gőznyomás figyelembe vételével.

A betervezett szivattyú max szállítási teljesítménye 1 400 l/min, melynek 50 %-os szállítási sebességnél kavitációt kell eredményeznie.

A buborékok jobb beoldódásához a rendszert egy ciklonnal egészítettük ki, így a folyadék áramlási útvonala jelentősen megnő. Ez a ciklon egyben tartalmazza a biocidos hatás eléréséhez szükséges réz vagy ezüst kolloid töltetet, mely a kavitáció után még megmaradó baktériumok elpusztítását eredményezi.

A fejlesztett berendezést mobillá tettük, ennek megfelelően önhordó szerkezetet kapott. A rendszer kb 200 liter folyadékkal tölthető fel, és a jellemző csőátmérő DN 50- DN 65.

A fejlesztett berendezést az ELTE Mikrobiológiai Tanszékének közreműködésével aprobáltuk az általuk előkészített szennyezett minták kísérleti vizsgálatával.

A mikrobális élő szennyeződések (alga, stb.) degradációjának vizsgálatát az MTA Sztaki illetve a Duna Kutató Intézet, valamint az ELTE Mikrobiológiai Tanszék bevonásával végeztük.

Felhasznált irodalom:

  • Könözsi László – Kavitációs áramlások szimulációja (szakirodalom 2000 Miskolc)
  • A Promptov, AVAliesin szennyvízkezelés kavitációval (2017 Tambov)
  • Németh Zoltán kavitációs folyamatok szakdolgozat (BME 2018)
  • KvakLab Kft.: Kavitációs áramlások modellezése. (Intern anyag, 2018)

További információ: www.gammaanalcont.hu

A publikált szakcikk az alábbi pályázati programhoz kapcsolódott:

KFI-16-1-216-0344   Innovatív víztartósítási és biológiai szennyezettség mentesítési eljárás kutatása, egyedi kavitációs berendezések kifejlesztése a technológiai vízek, ívóvizek és hajók ballasztvízeinek tisztítása érdekében.


További friss híreket talál a Technokrata főoldalán! Csatlakozzon hozzánk a Facebookon is!

Tovább
Hirdetés

Kapcsolódó cikkek

További Ipar

Hirdetés

Népszerű

Hirdetés

Technokrata a Facebookon

Hirdetés

IoT-Magazin.hu

Hirdetés

Kütyük

Hirdetés

Dotkom

Műszaki-Magazin.hu

Hirdetés