Connect with us

Hirdetés

technokrata

Turbókorszakban élünk: A belsőégésű motorok feltöltése

Garázs

Turbókorszakban élünk: A belsőégésű motorok feltöltése

Napjainkban már alig kapni szívómotoros autót, minden kétséget kizáróan beköszöntött a turbókorszak.

Azonban a belsőégésű motorok felöltése nem új keletű módszer, már a múlt évszázad elején is előszeretettel alkalmazták, természetesen másfajta megvalósításokkal. Ezúttal a motorok feltöltése kerül terítékre: dióhéjban bemutatjuk, hogy mit tud a turbó és mit nem, miért jó a kompresszor és miért nem, s természetesen a Volkswagen rövid életű G-ladere sem maradhat ki a felsorolásból.

A belsőégésű motorok egyik fontos jellemzője a töltési fok, amely nem más, mint a hengerekbe jutó levegő (közvetett befecskendezésű benzinmotoroknál keverék) mennyiségnek, valamint rendelkezésre álló térfogatának – praktikusan a hengerek lökettérofagatának – a hányadosa. Ez a szívómotorok esetében nem éri el az egyet, de ezt minél jobban megközelíti az adott konstrukció, annál jobb hatásfokkal töltődik meg a henger. Innen pedig egyszerű a képlet: minél jobban fel tudjuk tölteni a motorunk hengereit levegővel illetve keverékkel, annál nagyobb teljesítményt tudunk adott lökettérfogat mellett elérni.

Nem nehéz belátni, hogy a töltési fok egy olyan tényező, amely nagyban meghatározza az adott méretű erőforrásból kifacsarható teljesítmény korlátait. Maga a töltési fok is sok tényezőtől függ, elég csak elképzelni, hogy a szívócső, a pillangószelep és a szívósor egyéb elemei alapvetően rontják az áramlás hatásfokát, tehát magát a töltési fokot is. Van azonban egy módszer a mérnökök kezében, amivel könnyedén túllendülhetnek a töltési fokon történő görcsölésen – ez volna a feltöltés.

Az elv egyszerű: ahelyett, hogy a dugattyú lefelé mozgása révén létrejövő depresszió nyomán áramoljon a hengerekbe a friss töltet, kívülről, plusz nyomással kell a közeget a motorba préselni. Ezáltal a szívómotorok töltetéhez képest jóval nagyobb mennyiségű levegő áramolhat a hengerekbe, amely révén több tüzelőanyaggal keverve jóval nagyobb (liter)teljesítmény érhető el. Az előnyök pedig vitathatatlanok, hiszen adott térfogat mellé több lóerő társulhat, miközben részterhelésen, amikor nincs szükség a nagy teljesítményre, takarékosan üzemelhet az erőforrás.

feltolt_01

Emellett a feltöltéses motorok alkalmazása a “downsizing” folyamatának szinte alapvető eleme – a nagyobb literteljesítmény és az emiatt alkalmazható kisebb motorok révén súly takarítható meg, könnyebb lefaragni az emissziós normákból és a fogyasztásban is jelentős megtakarítás érhető el azonos teljesítményű motorokat (szívó és feltöltött) összehasonlítva.

A feltöltésre persze számos módszert dolgoztak ki az autóipari szakemberek, elsőként az 1900-as évek elején a mechanikus feltöltőket előnyben részesítve. Ezek a szerkezetek általában térfogatkiszorításos elven működnek és a feltöltéshez közvetlenül a motorról hajtva nyerik a szükséges energiát. Többféle létezik belőlük, a legismertebb és legelterjedtebb a csavar kompresszor és a Roots-fúvó.

feltolt_02

Hogy a mechanikus feltöltő fogaskerékhajtással, szíjjal vagy más módon kerül meghajtásra, azt az adott konstrukció határozza meg. A mechanikus feltöltők nyomásviszonya nem olyan nagy, mint a turbófeltöltő esetében, viszont a közvetlen meghajtásnak köszönhetően vitathatatlan előnyük, hogy gázadásra azonnal reagálnak. Az áttételezésnek köszönhetően a kompresszorok fordulatszáma relatíve alacsony, így robosztusak, kevésbé hajlamosak a károsodásra.

Természetesen nincs rózsa tövis nélkül, így a kompresszorok hátrányait sem hagyhatjuk figyelmen kívül. A velük elért többletteljesítmény mellett aránytalanul magasabb az üzemanyag-fogyasztás, ami leginkább a motorral való közvetlen kapcsolatnak köszönhető. Mechanikai veszteségei nagyok, ráadásul minden üzemállapotban történik a hajtás, ha van rá szükség, ha nincs, ráadásul a jóval hangosabb működés ugyancsak ellene szól. A felsorolt negatívumok miatt ma már a kompresszort, mint mechanikus feltöltőt elavult megoldásnak tartják, azonban néhány gyártó még kitart a klasszikus technológia mellett és a mérnökök okos megoldásokkal igyekeznek kiküszöbölni a megoldás hátrányait.

feltolt_03

Speciális és kihagyhatatlan érdekesség még a Volkswagen által régen alkalmazott G-töltő. Noha a németek csak a ’80-as évek végén alkalmazták, ráadásul csak szűk számban, mégis szinte mindenki emlékezik a Corradókra, amelyekben ott dohogott a G-60. Ez a szerkezet nem más, mint egy spirálkompresszor, amelyet a motorról szíj hajt meg; háza és forgórésze is egy-egy azonos geometriájú spirálgörbéből áll. A forgórész és a ház tengelye excentrikusan helyezkedik el, úgy, hogy a két alkatrész többszörös érintkezésbe kerüljön egymással. Ilyen módon a két spirál a közbezárt teret több egymástól tömített cellára osztja. A forgórész bolygó mozgása során – a forgórész a saját tengelye körül nem fordul el – a cellák fokozatosan vándorolnak a spirális mentén, kiszorítva a gázt. Rövid élettartama miatt azonban sosem terjedhetett el széles körben a ‘G-Lader’.

A népszerű és manapság szinte minden gyártó által alkalmazott megoldást azonban a dinamikus elven működő kompresszor és az azt hajtó turbina együttese jelenti, természetesen a turbófeltöltő személyében. A turbó zsenialitása abban rejlik, hogy nem igényel jelentős plusz energiát a hajtása, hanem az amúgy veszendőbe menő, forró kipufogógázban lévő energiatartalmat hasznosítja – a nagy sebességű égéstermék hajtja meg a turbófeltöltő gázturbináját, így egyúttal a vele egy tengelyre csapágyazott kompresszort, ami a friss levegőt beszívja és a légkörinél magasabb nyomáson a hengerekhez juttatja. A turbófeltöltő a motor mechanikus részeivel nincs kapcsolatban, de a kipufogócsőben persze keletkezik többletnyomás, ami visszahat a teljesítményre.

Turbocharger for 2007 Ecotec Turbo 2.0L I-4 (LNF), David Kimble Illustration. X07PT_AR007

A turbófeltöltőre jellemző a nagy fordulatszám, ami 100.000-200.000/perc is lehet, üzemállapottól függően. A feltöltőben végbemenő nyomásemelés során a gáztörvényeknek megfelelően az áthaladó levegő hőmérséklete jelentősen megnő, így a feltöltés hatásfokát javítandó, egy úgynevezett töltőlevegő-visszahűtő (intercooler) közbeiktatása szükséges. A visszahűtés célja, hogy a növelt nyomású levegő sűrűbb legyen, azaz több oxigént tartalmazzon, ami ugye elengedhetetlen az égéshez.

A turbók egyik, ha nem a legnagyobb hátránya egyben hatékonysági előnye: hogy a motor főtengelye és a turbótengely között nincs mechanikus kapcsolat, így gázadásra bizonyos késedelemmel reagál, amit a köznyelv turbólyuknak nevez. Manapság azonban ez kevésbé jellemző, a gyártók kisméretű, hamar felpörgő feltöltőkkel vagy úgynevezett változó geometriájú turbókkal kerülik el a nemkívánatos jelenséget. Utóbbi esetben a turbina oldalon állítható álló lapátozás szolgálja azt, hogy alacsony gázsebességnél is hatékonyan pöröghessen fel a szerkezet.


0921_audi_future_01

A fentieken kívül léteznek még szofisztikáltabb konstrukciók, bizonyos (nagyobb) motorok esetében a szekvenciális feltöltés eredményez még hatékonyabb működést. Ilyenkor a turbók nem párhuzamosan üzemelnek, hanem egymást kiegészítve: alacsony fordulaton a kisebb „csiga” biztosítja a turbólyukmentességet, míg magasabb fordulatszámon egy nagyobbik, illetve mindkét feltöltő üzemel a kellő mennyiségű levegő szállításához. Persze létezik még bonyolultabb konstrukció például a BMW három turbós dízelmotorja formájában, sőt a bajorok már négyfeltöltős rendszert is kiszellőztettek.

A turbófeltöltő által generált nyomást persze szabályozni is kell, hiszen a turbónyomás önmagában véve a terheléssel együtt emelkedne. Ennek korlátozására, egy adott maximális töltőnyomás beállítására szolgál az úgynevezett ‘wastegate’, amely lényegében egy megkerülő szelepként képzelhető el. Amikor a kipufogógáz nyomása a turbó után egy bizonyos nyomásértéket átlép, akkor a wastegate kinyit, és a kipufogó gáz a turbót megkerülve, annak további pörgetése nélkül távozik a motorból. Emellett a turbó szerkezetének megóvása érdekében egy további szelep, úgynevezett lefújószelep alkalmazása is szükséges.

0807_opel_adam (3)

A szívó és turbós benzinmotorok esetében ugyanis nem szabad megfeledkezni arról, hogy a töltet áramlást egy pillangószelep szabályozza. Markáns gyorsításkor a turbó meghatározott nyomással tölt, a gázpedálról való lelépéskor azonban a pillangószelep zár, holott a feltöltő még mindig nyomná a szívócsőbe a komprimált levegőt. Ilyenkor, hogy a turbót ne terhelje meg a hirtelen megnövekedett gáznyomás visszahatása, egy szelep leengedi a felesleges nyomást a szívórészből. Ennek további előnye, hogy a turbó fordulatszáma nem torpan meg, hanem tovább foroghat, s a következő gázadásnál már késedelem nélkül képes reagálni.

A hosszú élettartam érdekében a turbóval szerelt motorok használata további gondosságot igényel. Esetlegesen az erősebb körök után nem szabad rögtön leállítani a motort, nagyjából 30-60 másodperc alapjárati járatás szükséges ahhoz, hogy a turbó forgórésze lelassulhasson, visszahűlhessen, ellenkező esetben a feltöltő élettartama csökken, sőt a turbó besülése vagy törése is előfordulhat. Ugyanígy a turbós motoroknál még fontosabb a rendszeres olajszervíz és a jó kenőanyag.

Mindeközben – többek között Ingolstadtban – a mérnökök már komolyan számolnak az elektromos turbóval, ami még hatékonyabbá teheti a dízelmotorokat; a technológia már bőven él, olyannyira, hogy már élesben tesztelik is a gyártók. Az előnyök vitathatatlanok, ugyanis a szekvenciális feltöltésű rendszerekhez hasonlóan a két feltöltő egymást kiegészítve a hagyományos turbómotorokénál jobb gázreakciót, a nyomás gyorsabb felépülését eredményezheti, végleg eltüntetve a nemkívánatos turbólyukat.

1606vettel

A nagyobb feltöltő a konvencionális elvek alapján a kipufogógáz által meghajtva működik, míg egy jóval kisebb egység az elektromos hajtást felhasználva építi fel a nyomást olyan esetekben, amikor a nagyobbik “csiga” még nem képes erre. Az elektromotor szinte késlekedés nélkül, azonnal felgyorsítja a kompresszorkereket, ami nyomban nyomásemelkedéssel szolgál. Ennyit tud ma a turbótechnológia, azonban természetesen a haladás nem áll, s vélhetően izgalmas és finom technikai csemegékre számíthatunk az elkövetkező években is.

Végül, de nem utolsósorban akad egy kakukktojás megoldás is, mégpedig a torlónyomásos feltöltés, más néven a ram air személyében. Ezt a módszert csakis gyorsabb autóknál érdemes alkalmazni, ugyanis a lényege nem más, minthogy a gyorsan mozgó autó egy (orr)nyílásán a nagy sebességű menetszél préseli be a levegőt. Itt természetesen nincs semmiféle mechanikai megoldás, csupán a külső levegő sebességének hatása érvényesül, az is csak jelentős tempónál. Viszont ettől függetlenül nem szabad megfeledkezni róla, a Forma-1 szívómotoros korszakában ugyanis hozzávetőlegesen 10-20% lóerőnövekmény jelentkezik. Mindez azonban 200-300 km/h-s tempónál. Viszont sorozatban is találkozhatunk ram air megoldásokkal, például a Porsche Cayman GT4 esetében.

Akárhogy is, a feltöltés ma már szinte elengedhetetlen eleme a benzines és a dízelmotoroknak is, alig maradt csupán néhány gyártó, aki nem kóstolt bele a turbók világába. A downsizing megköveteli a feltöltők használatát, ami több szempontból sem hátrányos. A fogyasztás és hatékonyság mellett a motor vezethetősége, karakterisztikája is javul, hiszen a turbómotorok kedvezőbb nyomatéki görbével rendelkeznek, már alacsony fordulaton is sokkal jobban használhatóak szívó társaiknál. A felhasználók részéről viszont fokozottabb odafigyelést igényelnek a hosszú távú megbízható működés érdekében, amit viszont a másik oldalon bőven meghálálnak.

Forrás: Autó Pult

 



Szólj hozzá!

További Garázs

Hirdetés

Népszerű

Hirdetés

Technokrata a Facebookon

Hirdetés

IoT-Magazin.hu

Hirdetés

Kütyük

Smart home

Így képzelik el a magyarok az álomotthonukat

2024. március 20. szerda

Office

Foglalj helyet, hogy helyet foglalhass!

2024. március 13. szerda

Smart home

Okoskészülék vagy hagyományos háztartási gép?

2024. február 28. szerda
owlet care babafigyelő

Smart home

OWLET CARE a magyarországi piacon!

2024. február 26. hétfő
Hirdetés

Dotkom

Műszaki-Magazin.hu

Hirdetés